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Quiz results 2024

Overall number of students achieving grade ranges
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Goals

Describe electrostatic and magnetic forces
* Electrostatic
* Electrostatic forces
* Gauss law, relation to Coulomb's law
e Capacitors
* Electric fields in the vicinity of conductors/insulators
* Magnetic
* Forces acting on wires
* Fieldsinduced by currents
* EMF
* Materials
We need to repeat this so we could perform “sanity checks” on our models

Identify the most basic equations, preferably in scalar form
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What is electrostatics?

The word would suggest that electrostatics studies phenomena related to
stationary electric charges in the absence of a magnetic field

Absence of magnetic fields or electric currents not required

These must however be constantin time.



Coulomb law

Consider two point charges g; and g,. The force acting on charge 2:

r
2 4192 . R
9
r1vector from charge 1 to charge 2 q, £

Constant k hasthevalue k =8.99 x 10° Nm?/C? =~ 9 x 10° Nm?/C?
Can also be written as 1

k=-—,¢ =885x10712F/m permitivity of vacuum
47'[80

Electric field — force on a positive test charge:

E =

| T

No need to know the charge distribution in order to predict its effect
Superposition principle: E = El + §2+...



Gauss’s law

Gives the relation between the electric field flux through a closed

surface and the net charge Q. enclosed within that surface:

Relation to Coulomb law

aa

Let us imagine a spherical surface. The fluxis then:

jEd/T=fEdA=EfdA=E-4nr2
S

S

From Gauss’s law we know that:

Q

= E(4nr?)
€0

Solving for E we obtain:

E L O
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Gauss’s law - differential form

Differential form is obtained using the Gauss’s theorem:

Jﬁ-d,éT:J V. Bdv
S v (S)

Gauss’s law:

f dA re Qencl
S
From this we get: / \ On the right-hand side:
I - 1
j EdA=]| (V-E)av Qenct _ 1 pdV
S V() €0 €0 Jy(s)
ﬁ 1 o
j (V-E)dVv=—| pdV
v(S) €0 Jv(s)
1 5 P
f (v E——p)dV—O - | V-E=—
V(S) €0 0

=0
Differential form of the Gauss’s law
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Exercise: Electric field of a line of charge

Let us use the Gauss’s law to calculate the electric field of a line of

charge with linear density A = Q/L ?E
For our chosen Gaussian surface, | | E |
Gauss’s law gives RA f
S e S s e e S m s s e
Qencl _ AL

f EdA = EQ2nRL) =
S €0 €0

A

L

where L is the length of our chosen surface and 2mR is its circumference.
For the electric field we therefore get:

12
_27T€0R

Generalized “recipe”:
1. Recognize symettries
2. Construct a suitable surface



Example: shielded conductor on a dielectric

Grounded Vv
acuum
box _
c=1
u=0v

conductoru = 1V

Si0, € = 3.9

Model

Potential distribution Electric field lines



Electric fields and conductors

External electric field induces charges

1. Electric field inside conductors is zero in a static situation

2. Close to the surface of conductors, the electric field is perpendicular to the
surface
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Electric field near (any) conducting surface

We choose as our Gaussian surface a small cylindrical box so that one of its
circular ends is just above the conductor. The other end is just below the
conductor surface and the sides are perpendicular to it.

The electric field is: £ p,
zero inside a conductor -l |/ f //-

. . . ¥ g/ e
perpendicular just outside it \i\% E/
uniform over small areas 3 Y

+i\g/
+

The Gauss’s law then gives: ;‘/

%/
, Q oA . YN
jEdaZEAZ encl:_ ;{: E / /
€0 €0 X

S

+

Where o is the surface density of charge. We then get for the electric field:



Electric field of a thin charged plate (review at home)

Thin charged plate with a surface charge density ¢

+ +
For our chosen surface Gauss’s law gives —_—
+ +
o > Qene ot o
EdA = NE HY
S €o —_—— —
+ +
AO- g + o+
2EA = - [ =— —
€0 28y ~ + o+ ~
where Ais the plate surface area * F
r &
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Electric field of two charged plates (review at home)

Two charged plates with a surface charge density o

E=— Does not depend on the distance!
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Electric potential

Let us consider an electric field E and two points, P; and P,.

In order to move a charge from P; to P, the electric force carries
out work

W:f F-d§=qf B ds

U
=
M|

ds
A

The potential difference between these two points is the potential energy
difference (negative of the work done by the electric force i.e. the work you can
extract) divided by the charge q:

w
U(P) —U(P) = ]



Electric potential

Small change of potential:

dU = —E -d$ where d§ = %dx + ydy + 2dz

d dU—aUd +aUd +aUd
an ~ 0x * dy Y 0z z

if we compare this with the definition of gradient from the last lecture, we can write:

E=-VU

We can then rewrite the Gauss’s law as:

V-E=V- (=VU) = —=V?U = P V2U = —— | Poissonequation
o €0

Knowing that V x (Vf) = 0 for any scalar function:




Electrostatic force is conservative (review at home)

From the definition of electric potential: p
2
P,
Wpath1 = <f F'd§> =—(UP) —U(Py)) A
Py Path1 Path 1 \
/
P; /
Wpaths = < f F- d§> = —(U(Py) —U(P)) Path 2
Py Path2 y4
P -~

(Vx E)ds
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Electrostatic force is conservative!



Capacitance (review at home)

Let us consider two paralel plates, spaced apart by a distance d

-

We assume that the distance d is small compared to the 3 :
dimensions of each plate and we neglect the edge effects E_'_E
+_§)——

The field between the plates is: j_*E:
A_| +H———

T

p=2- 9 e

g &4 e

The field is constant and uniform so that the potential (E = —VU) is i -
H———

b o+ -
_ _ . = o Qd T |
U=Up,=Up,—-U, = LE ds—JEds—goAj dS_eoA b a

By definition the capacitance of a capacitoris:

_Q
C=7
so for the parallel plate capacitor we get
A
o2 A



Dielectrics

If we insert a piece of insulating material in a capacitor, the capacitance will

Increase by a factor k; this is the dielectric constant
-0

+
Qo

m Dielectric constant k

FF F F F FF

B

Vacuum
Air 1.0006
A Paper 3.7
C =kCy =KE,—=
d SiO, 3.9
We can define a new quantity called AL,O, 9
the permitivity of a material: HfO, o5
£ = K&, Water 80
(liquid)
The capacitance then becomes: SrTi0; 300
A
C=¢—

d
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Molecular description of dielectrics

Why should the capacitance be larger when a dielectric is present between the plates of
a capacitor?

+0 -0
The potential difference between the "" > - i g g 8 "
plates is given by: h > 1 " —
+ ;. - W gg ~
Q = ColUp i =< -
—F [ 298 |
> — -} o
If we insert a dielectric into the capacitor, the - y i'“ . SISIS, .
electric field induces surface charges P HSISIS /N

Because of this the electric field in the dielectric is smaller o

than in air i -
— E isreduced by a factor k = .

Since E = U/d, S o -
— voltage is also reduced by a factor k

but Q = CU is constant so:
— C isincreased by a factor k

19



Molecular description of dielectrics

The electric field in the dielectric can be considered as the vector sum of the external

electric field E_O) (the field in the capacitor when no dielectric is present) and the field Eind
due to the induced charge on the surface of the dielectric:

Ep =Ey+ Eing
Since these fields are acting in oposite directions, the net field is:
Ey

ED=EO_Eind:7

and the induced field is:

1
Eina = Eo I_E

The electric field between parallel plates is related to the surface charge on the plates
Ey =0o/&o
Similarly, we can define an induced charge density:

Oind
€o

1 0o free charge density
Eing = )

where 0Ojnqg = 0p <1 ——

K Oing bound charge density



Gauss’ law in dielectrics

Gauss’s law:

cszE:dC_i:Qencl
S €0
- p = _
V-Ezg— or V-(eOE) = Pfree
0

In dielectrics, we make the replacement
€o — &= K&p

So we can write:

V- (SE) = Pfree

Traditionally, the magnitude ¢k is referred to as the displacement field D = ¢F so
Gauss’s law is then written as:

Sl

V-

= Pfree




Boundary between two dielectrics (l)

We have two dielectric materials, 1 and 2 with respective dielectric constants
k1 and kK, and free charge density o at the interface

We choose as our Gaussian surface a 2 n Region 2
small cylindrical box so that one of its
circular ends is above the interface and
the other under it. &1
Region 1 A
The total flux through the surface is:
®=D, -AA— D, -fiAd = oA A )
? N Region 2

From this we get:

(Bz—ﬁl)ﬁZO'

Region 1



Boundary between two dielectrics (ll)

We can also use the Stokes theorem to get another useful boundary condition
by considering a small rectangular path across the interface.

VXE =0

The circulation of the electric field is:

r=fﬁ-di=(1-f—ﬁz-f)=o

The tangential component does not change:

(El_ﬁz)£=0



Boundary between two dielectrics

Electric field for a point charge close to an interface

1 2

/

N2

2\

€2>€1 €2<€1



Magnetostatics



Electric current in a magnetic field

Force is up

Magnetic fields exert force on

current-carrying wires

This force is perpendicular both to the direction of the current and to the
direction of the magnetic field B

The direction is given by the right-hand rule while the magnitude is
proportional to:
F o [¥B sin 6
In the form of a vector equation:
F=I¢xB
lisa vector, its magnitude is the length of the wire and direction along the
wire in the direction of positive current. This formula is valid for straight wires

in a uniform field. The more general form is valid for a non-uniform field and
wires of arbitary shape:

dF = Id¢ x B

25




Magnetic field due to a straight wire

The magnetic field due to electric current in a long wire is:

o ! . .
B = —— < Wewill get to this shortly

with o, = 41 X 1077 Tm/A (permeability of free space)

What is the force acting between two parallel
current-carrying wires?

I
B, = o1 field from wire 1 at the position of wire 2

21t d

Force on wire 2 in the magnetic field B;:

Uo 111,
F,=L¢{B =——¢
2 2v201 =5 Tt
Parallel currents attract each other, while currents

flowing in the opposite direction repel each other

Wire 1 Wire 2

et

26



Ampere’s law

General relation between the current in a wire (of any shape) and
the magnetic field around it

Consider an arbitrary closed path around a current. The circulation of the

magnetic field around this closed path will be y, times the enclosed current:
A

= - 1
%B At = polenc
Application to the case of a straight wire:

_ jﬂgd{) ny jﬂdf = B(21r)

: oL . Closed path made
From this, the magnetic field of a straight up of segments of | A rea enclosed

wire is: length A4 A by the path

_ Mol !

B =
2T

27



Magnetic field of a solenoid (Homework)

Let us apply the Ampere’s law to find the magnetic field of a solenoid

The field is small outside the solenoid

(except near the end) and uniform inside the
solenoid .

.......................

28



Magnetic field of a solenoid (Homework)

Let us apply the Ampere’s law to find the magnetic field of a solenoid

Current

The field is small outside the.solen.md. COOOCOOO6 66 Q/Si;::f
(except near the end) and uniforminside the ~— =

solenoid Cro—m>—---nd
We choose the path abcd for applying the X ®*® ®®® ®*® ® @Nggrem
Ampeére’s law. We then get: b;“;*z_w"“a page

-

- - b—> - C—> - d—) - a—>
fﬁB-d{’: B-d{’+fB-d£’+JB-d€+fB-d{’
a b c d .
Only the integral over the cd segment is non-zero, where B is uniform and
parallel to d¥ so we get:

jgﬁ-d?=jd§-d?=3{)
The total currccant enclosed by the loop is NI where N is the number of loops
contained in the path, so the Ampere’s law gives us:

B = uyNI
If we letn = N /¥ be the number of loops per unit length, then:

B = pugni



Biot-Savart Law

Describes the magnetic field coming from a
wire of any shape

The current flowing in any path can be
considered as many infinitesimal current
elements. If d¢ is an infinitesimal part of the
current path, the magnetic field in any point P
In space is given by:

ol do x #
4t 1?2

dB =

The total magnetic field at point P is then found by integrating over all current
elements:

. [ dex?
g =t

2 > Biot —Savart Law
T T

30



Biot-Savart Law - example

Magnetic field B due to a wire segment

One quarter of a circular loop of wire carries current I as shown in the figure.
The current enters and leaves on straight segments of the wire. Find the
magnetic field at point C.

The magnetic field from straight sections is
zero because df and 7 are parallel so df x

r = 0.
From the circular part we get:
ol d¥
" 4nR?
We integrate over a quarter of a circle and get:

'U()I df ‘U()I 1
B=| dp=-% = Z2mR| =
j an ] RZ~ 4nR? [4 "

dB

_ Kol
8R



Magnetic field in materials: ferromagnetic

Permanent magnets — ferromagnetic materials (Fe,

Ni, Co, Gd only ferromagnetic elements) \ T 1 t
v of

If we insert a piece of ferromagnetic material ¥ f /

inside a solenoid the field can be increased, R [ \ o

often by a factor of 100-1000. The resulting field

is the sum of the field due to current and the T ' }

field due to the material: 1 T 1

-

B = §0 + §M where §M is the additional field due to the ferromagnetic material

The total field inside a solenoid in this case can be written by replacing the constant p,
by u, characteristic of the material inside the coil:

B = unl uisthe magnetic permeability of the material

we can introduce the field H, called the magnetic field strength and defined as:

H=

= |

32



Magnetic field in materials: ferromagnetic

U is not constant, it depends on the external magnetic field

B (T)
1.20F

1.00

0.80

0.60

0.40

0.20

1 1 1 BO(T)

0 040 080 120
X103 X103 X103

Total magnetic field of an iron core toroid

1.20} B (T) b
1.00} ¢

2 & ByT)

040 .80 1.20
%10-3 K10-3 X10-3

Hysteresis curve
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Magnetic field in materials

Nonferromagnetic materials fall into two classes:
* paramagnetic with u > u, — attracted by magnetic fields
* diamagnetic with u <puy - repulsed by magnetic fields
The ratio of u to u, for any materialis called the relative permeability K, :

U
K., =—
m Ho

Another useful parameter is the magnetic susceptibility y,, defined as:

Xm = Kp— 1

Paramagnetic materials have y,, > 0 and diamagnetic y,, <0

Paramagnetic | y, Diamagnetic | y,
substance substance

Aluminum 2.3x10° Copper -9.8 x 10°°
Platinum 2.9x 104 Graphite 1.6 x10°°
Tungsten 6.8 x 105 Bismuth -1.6x 104

34



Magnetic field in materials

Levitating carbon

35



http://www.hfml.ru.nl/froglev.html
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Electromagnetic induction

Changing magnetic field induces an emf (electromotive force)

This emf is proportional to the <% SN kK
rate of change of the QU 9 Q4 ¢ Qi 9
magnetic flux passing through |1 b /’=0
the circuit or loop of area A. @
Magnetic flux is defined as: s PR

b ™ o

N - ‘ tolavard coil Magnet nlo.veme.nt
(I) — B dA (B in coil moves (B in coil
B — g || increasing)

down constant)
(ﬁ in coil [ S I
S

decreasing)

And the induced emfis:

dPp . .
E=— It Faraday’s law of induction

Lenz’s law:

Current produced by an induced emf moves in such a direction that the magnetic
field created by that current oposes the original change in flux.

37



EMF induced in a moving conductor

Assume a uniform magnetic field B
perpendicular to the area bounded by the
U-shaped conductor and the movable rod
resting on it

®©
If the rod moves at a speed v, it travels a ®
distance dx = vdt in time dt, so the area
increases by an amount dA = ¢dx = fvdt £
O,

According to Faraday’s law there is an
induced emf £ whose magnitude is given by: B (outgrd) © O l_C?_J

o _d®p _BdA _Btvdt
~ T4t dr  dr oYY




Changing magnetic flux produces an electric field

A changing magnetic flux produces an electric field in any region in
space (not only in conductors or wire loops), so we need to find a
more general form of the Faraday’s law

The potential difference between two points a and b is defined as:
b
Vyp = j E-df
a

The emf € induced in a circuit is equal to the work done per unit charge by the
electric field, which equals the integral E.df along the closed path:

5=f§-d?

If we combine this with the Faraday’s law we get:

. do
%E - dl =— dtB General form of Faraday’s law




Changing magnetic flux produces an electric field

We can rewrite Faraday’s law using the Stokes’s theorem:

L - do
fE-cw:— z

dt

On the left side we apply the Stokes theorem:
fﬁﬁ:j(wﬁ).wf
S

While on the right side we can write:

ddy, d [ - - o -\ -
_— - _— B-dA:—f —B)-dA
dt dt J. .

So in the end we get:

oB
ot

Nonconservative!

- a—> -
J(VxE+—B>-dA=O — > |yxF=
< ot

Differential form of
Faraday’s law



Exercise

Find the magnetic field at point Pif a current-carrying wire has the shape shown in
parts (a) and (b). The radius of the curved part of the wire is A, and the linear parts are
assumed to be very long.




Homework assignement

Please refresh your knowledge on the subjects of:
e Calculating capacitance

Test your new/old knowledge by solving the following exercises

1. A thin cylindrical shell of radius A, is surrounded by a second concentric cylindrical shell of radius A,. The
cross-section is shown on the image. The inner shell has a total charge + Qand the outer shell -Q. Assuming
the length L of shellis much greater than A, or R, and neglecting the thickness of shells, determine the
electric field as a function of the distance from center Rfor:

0< R<R,

R,< R<R,

)

)

) R>R

) 2 &

o O T O

Determine the formula for capacitance

... and submit your results via moodle (exercise 2)

42
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