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Goals

▪ Describe electrostatic and magnetic forces
• Electrostatic

• Electrostatic forces
• Gauss law, relation to Coulomb's law
• Capacitors
• Electric fields in the vicinity of conductors/insulators

• Magnetic
• Forces acting on wires
• Fields induced by currents
• EMF
• Materials

▪ We need to repeat this so we could perform “sanity checks” on our models
▪ Identify the most basic equations, preferably in scalar form

2



Reference

Physics for Scientists and Engineers 
by Douglas C. Giancoli 
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What is electrostatics?

▪ The word would suggest that electrostatics studies phenomena related to 
stationary electric charges in the absence of a magnetic field

▪ Absence of magnetic fields or electric currents not required

▪ These must however be constant in time.
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permitivity of vacuum

Coulomb law

▪ Consider two point charges 𝑞1 and 𝑞2. The force acting on charge 2:
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vector from charge 1 to charge 2

▪ Constant 𝑘 has the value
▪ Can also be written as

▪ Electric field – force on a positive test charge:

Ԧ𝐹2 = 𝑘
𝑞1𝑞2

𝑟2 Ƹ𝑟21

Ƹ𝑟21

𝑘 = 8.99 × 109 𝑁𝑚2/𝐶2 ≈ 9 × 109 𝑁𝑚2/𝐶2

𝑘 =
1

4𝜋𝜀0
, 𝜀0 = 8.85 × 10−12𝐹/𝑚

𝐸 =
Ԧ𝐹

𝑞

No need to know the charge distribution in order to predict its effect
▪ Superposition principle: 𝐸 = 𝐸1 + 𝐸2+. . .



Gauss’s law

▪ Gives the relation between the electric field flux through a closed 
surface and the net charge 𝑄𝑒𝑛𝑐𝑙 enclosed within that surface:
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▪ Relation to Coulomb law
Let us imagine a spherical surface. The flux is then:

From Gauss’s law we know that:

Φ = න
𝑆

𝐸𝑑 Ԧ𝐴 =
𝑄𝑒𝑛𝑐𝑙

𝜀0

න
𝑆

𝐸𝑑 Ԧ𝐴 = න
𝑆

𝐸𝑑𝐴 = 𝐸 න 𝑑𝐴 = 𝐸 ⋅ 4𝜋𝑟2

𝑄

𝜀0
= 𝐸 4𝜋𝑟2

Solving for 𝐸 we obtain:

𝐸 =
1

4𝜋𝜀0

𝑄

𝑟2



Gauss’s law – differential form

Differential form is obtained using the Gauss’s theorem:
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From this we get:

න
𝑆

Ԧ𝐹 ⋅ 𝑑 Ԧ𝐴 = න
𝑉(𝑆)

∇ ⋅ Ԧ𝐹𝑑𝑉

𝑄𝑒𝑛𝑐𝑙

𝜀0
=

1

𝜀0
න

𝑉(𝑆)

𝜌𝑑𝑉

න
𝑉(𝑆)

∇ ⋅ 𝐸 𝑑𝑉 =
1

𝜀0
න

𝑉 𝑆

𝜌𝑑𝑉

න
𝑉(𝑆)

∇ ⋅ 𝐸 −
1

𝜀0
𝜌

=0

𝑑𝑉 = 0 ∇ ⋅ 𝐸 =
𝜌

𝜀0

Differential form of the Gauss’s law

න
𝑆

𝐸𝑑 Ԧ𝐴 =
𝑄𝑒𝑛𝑐𝑙

𝜀0

න
𝑆

𝐸𝑑 Ԧ𝐴 = න
𝑉(𝑆)

∇ ⋅ 𝐸 𝑑𝑉

Gauss’s law:

On the right-hand side:



Exercise: Electric field of a line of charge

▪ Let us use the Gauss’s law to calculate the electric field of a line of 
charge with linear density 𝜆 = 𝑄/𝐿 

8

▪ For our chosen Gaussian surface, 
Gauss’s law gives

where 𝐿 is the length of our chosen surface and 2𝜋𝑅 is its circumference. 
For the electric field we therefore get:

න
𝑆

𝐸𝑑 Ԧ𝐴 = 𝐸 2𝜋𝑅𝐿 =
𝑄𝑒𝑛𝑐𝑙

𝜀0
=

𝜆𝐿

𝜀0

𝐸 =
1

2𝜋𝜀0

𝜆

𝑅

L

▪ Generalized “recipe”:
1. Recognize symettries
2. Construct a suitable surface 



Example: shielded conductor on a dielectric
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Grounded 
box

𝑢 = 0𝑉

SiO2 𝜀 = 3.9

Vacuum 
𝜀 = 1

conductor 𝑢 = 1𝑉

Model Mesh

Potential distribution Electric field lines



Electric fields and conductors

▪ External electric field induces charges
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1. Electric field inside conductors is zero in a static situation
2. Close to the surface of conductors, the electric field is perpendicular to the 

surface



Electric field near (any) conducting surface

▪ We choose as our Gaussian surface a small cylindrical box so that one of its
circular ends is just above the conductor. The other end is just below the
conductor surface and the sides are perpendicular to it.
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Where  is the surface density of charge. We then get for the electric field:

න 𝐸𝑑 Ԧ𝑎 = 𝐸𝐴 =
𝑄𝑒𝑛𝑐𝑙

𝜀0
=

𝜎𝐴

𝜀0

The electric field is:
zero inside a conductor
perpendicular just outside it
uniform over small areas

The Gauss’s law then gives:

𝐸 =
𝜎

𝜀0



Electric field of a thin charged plate (review at home)

▪ Thin charged plate with a surface charge density 
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▪ For our chosen surface Gauss’s law gives

where A is the plate surface area 

න
𝑆

𝐸𝑑 Ԧ𝐴 =
𝑄𝑒𝑛𝑐𝑙

𝜀0

2𝐸𝐴 =
𝐴𝜎

𝜀0
𝐸 =

𝜎

2𝜀0



Electric field of two charged plates (review at home)

Two charged plates with a surface charge density 
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𝐸 =
𝜎

𝜀0
Does not depend on the distance!



Electric potential

Let us consider an electric field 𝐸 and two points, 𝑃1 and 𝑃2.
In order to move a charge from 𝑃1 to 𝑃2 the electric force carries
out work
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The potential difference between these two points is the potential energy
difference (negative of the work done by the electric force i.e. the work you can
extract) divided by the charge 𝑞:

𝑊 = න
𝑃1

𝑃2

Ԧ𝐹 ⋅ 𝑑 Ԧ𝑠 = 𝑞 න
𝑃1

𝑃2

𝐸 ⋅ 𝑑 Ԧ𝑠

𝑈(𝑃2) − 𝑈(𝑃1) = −
𝑊

𝑞



Electric potential

Small change of potential:
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𝑑𝑈 = −𝐸 ⋅ 𝑑 Ԧ𝑠

if we compare this with the definition of gradient from the last lecture, we can write:

𝑑 Ԧ𝑠 = ො𝑥𝑑𝑥 + ො𝑦𝑑𝑦 + Ƹ𝑧𝑑𝑧

𝑑𝑈 =
𝜕𝑈

𝜕𝑥
𝑑𝑥 +

𝜕𝑈

𝜕𝑦
𝑑𝑦 +

𝜕𝑈

𝜕𝑧
𝑑𝑧

where

and

𝐸 = −∇𝑈

Knowing that ∇ × ∇𝑓 = 0 for any scalar function:

∇ × 𝐸 = 0

We can then rewrite the Gauss’s law as:

∇ ⋅ 𝐸 = ∇ ⋅ −∇𝑈 = −∇2𝑈 =
𝜌

𝜀0

∇2𝑈 = −
𝜌

𝜀0

Poisson equation



Electrostatic force is conservative (review at home)

▪ From the definition of electric potential:
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Electrostatic force is conservative!

𝑊𝑃𝑎𝑡ℎ1 = න
𝑃1

𝑃2

Ԧ𝐹 ⋅ 𝑑 Ԧ𝑠

𝑃𝑎𝑡ℎ1

= − 𝑈(𝑃2) − 𝑈(𝑃1)

𝑊𝑃𝑎𝑡ℎ2 = න
𝑃1

𝑃2

Ԧ𝐹 ⋅ 𝑑 Ԧ𝑠

𝑃𝑎𝑡ℎ2

= − 𝑈 𝑃2 − 𝑈 𝑃1

▪ From the Stokes theorem:

Γ𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑓𝑖𝑒𝑙𝑑 = න
1

2

𝐸𝑑 Ԧ𝑠
𝑃𝑎𝑡ℎ1

+ න
2

1

𝐸𝑑 Ԧ𝑠
𝑃𝑎𝑡ℎ2

= න
𝑃𝑎𝑡ℎ1+𝑃𝑎𝑡ℎ2

∇ × 𝐸 𝑑 Ԧ𝑠

∇ × 𝐸 = 0 → න
1

2

𝐸𝑑 Ԧ𝑠
𝑃𝑎𝑡ℎ1

+ න
2

1

𝐸𝑑 Ԧ𝑠
𝑃𝑎𝑡ℎ2

= 0 න
1

2

𝐸𝑑 Ԧ𝑠
𝑃𝑎𝑡ℎ1

= න
1

2

𝐸𝑑 Ԧ𝑠
𝑃𝑎𝑡ℎ2

i.e.



Capacitance  (review at home)

▪ Let us consider two paralel plates, spaced apart by a distance 𝑑
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We assume that the distance 𝑑 is small compared to the
dimensions of each plate and we neglect the edge effects

The field between the plates is:

𝐸 =
𝜎

𝜀0
=

𝑄

𝜀0𝐴

The field is constant and uniform so that the potential (𝐸 = −∇𝑈) is:

𝑈 = 𝑈𝑏𝑎 = 𝑈𝑏 − 𝑈𝑎 = − න
𝑎

𝑏

𝐸 ⋅ 𝑑 Ԧ𝑠 = න
𝑎

𝑏

𝐸𝑑𝑠 =
𝑄

𝜀0𝐴
න

𝑎

𝑏

𝑑𝑠 =
𝑄𝑑

𝜀0𝐴

▪ By definition the capacitance of a capacitor is:

𝐶 =
𝑄

𝑈

so for the parallel plate capacitor we get:

𝐶 =
𝑄

𝑈
= 𝜀0

𝐴

𝑑



Dielectrics

If we insert a piece of insulating material in a capacitor, the capacitance will
increase by a factor 𝜅; this is the dielectric constant
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Material Dielectric constant 𝜅

Vacuum 1

Air 1.0006

Paper 3.7

SiO2 3.9

Al2O3 9

HfO2 25

Water 
(liquid)

80

SrTiO3 300

𝐶 = 𝜅𝐶0 = 𝜅𝜀𝑜

𝐴

𝑑

𝜀 = 𝜅𝜀𝑜

We can define a new quantity called 
the permitivity of a material:

𝐶 = 𝜀
𝐴

𝑑

The capacitance then becomes:



Molecular description of dielectrics

Why should the capacitance be larger when a dielectric is present between the plates of 
a capacitor?

19

The potential difference between the 
plates is given by:

𝑄 = 𝐶0𝑈0

If we insert a dielectric into the capacitor, the 
electric field induces surface charges 

→ 𝐸 is reduced by a factor 𝜅
Since 𝐸 = 𝑈/𝑑,
→ voltage is also reduced by a factor 𝜅

but 𝑄 = 𝐶𝑈 is constant so:
→ 𝐶 is increased by a factor 𝜅

Because of this the electric field in the dielectric is smaller 
than in air



Molecular description of dielectrics

The electric field in the dielectric can be considered as the vector sum of the external 
electric field 𝐸0 (the field in the capacitor when no dielectric is present) and the field 𝐸𝑖𝑛𝑑

due to the induced charge on the surface of the dielectric:
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Since these fields are acting in oposite directions, the net field is:

𝐸𝐷 = 𝐸0 + 𝐸𝑖𝑛𝑑

𝐸𝐷 = 𝐸0 − 𝐸𝑖𝑛𝑑 =
𝐸0

𝜅

and the induced field is:

𝐸𝑖𝑛𝑑 = 𝐸0 1 −
1

𝜅

The electric field between parallel plates is related to the surface charge on the plates

Similarly, we can define an induced charge density:

𝐸𝑖𝑛𝑑 =
𝜎𝑖𝑛𝑑

𝜀0
where 𝜎𝑖𝑛𝑑 = 𝜎0 1 −

1

𝜅

𝜎0 free charge density

𝜎𝑖𝑛𝑑 bound charge density

𝐸0 = 𝜎0/𝜀0



Gauss’ law in dielectrics

Gauss’s law:
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In dielectrics, we make the replacement  

Φ = න
𝑆

𝐸𝑑 Ԧ𝑎 =
𝑄𝑒𝑛𝑐𝑙

𝜀0

∇ ⋅ 𝐸 =
𝜌

𝜀0

∇ ⋅ 𝜀0𝐸 = 𝜌𝑓𝑟𝑒𝑒or

𝜀0 → 𝜀 = 𝜅𝜀0

So we can write:

∇ ⋅ 𝜀𝐸 = 𝜌𝑓𝑟𝑒𝑒

Traditionally, the magnitude 𝜀𝐸 is referred to as the displacement field 𝐷 = 𝜀𝐸 so
Gauss’s law is then written as:

∇ ⋅ 𝐷 = 𝜌𝑓𝑟𝑒𝑒



Boundary between two dielectrics (I)

▪ We have two dielectric materials, 1 and 2 with respective dielectric constants 
𝜅1 and 𝜅2 and free charge density 𝜎 at the interface
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From this we get:

• We choose as our Gaussian surface a
small cylindrical box so that one of its
circular ends is above the interface and
the other under it.

• The total flux through the surface is:

Φ = 𝐷2 ⋅ ො𝑛𝐴 − 𝐷1 ⋅ ො𝑛𝐴 = 𝜎𝐴

𝐷2 − 𝐷1 ⋅ ො𝑛 = 𝜎



Boundary between two dielectrics (II)

▪ We can also use the Stokes theorem to get another useful boundary condition 
by considering a small rectangular path across the interface.

▪ The circulation of the electric field is:
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The tangential component does not change:

∇ × 𝐸 = 0

Γ = න 𝐸 ⋅ 𝑑Ԧ𝑙 = 𝐸1 ⋅ Ƹ𝑡 − 𝐸2 ⋅ Ƹ𝑡 = 0

𝐸1 − 𝐸2 ⋅ Ƹ𝑡 = 0



Boundary between two dielectrics

Electric field for a point charge close to an interface
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𝜀2 > 𝜀1 𝜀2 < 𝜀1

2 1 2 1



Magnetostatics



Electric current in a magnetic field

▪ Magnetic fields exert force on
current-carrying wires
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In the form of a vector equation:
𝐹 ∝ 𝐼ℓ𝐵 sin 𝜃

▪ The direction is given by the right-hand rule while the magnitude is
proportional to:

Ԧ𝐹 = 𝐼ℓ × 𝐵

ℓ is a vector, its magnitude is the length of the wire and direction along the 
wire in the direction of positive current. This formula is valid for straight wires 
in a uniform field. The more general form is valid for a non-uniform field and 
wires of arbitary shape:

𝑑 Ԧ𝐹 = 𝐼𝑑ℓ × 𝐵

This force is perpendicular both to the direction of the current and to the
direction of the magnetic field 𝐵



Magnetic field due to a straight wire

▪ The magnetic field due to electric current in a long wire is:
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Force on wire 2 in the magnetic field B1:

𝐵 =
𝜇0

2π

𝐼

𝑟

with 𝜇0 = 4π × 10−7 Tm/A (permeability of free space)

▪ What is the force acting between two parallel 
current-carrying wires?

𝐵1 =
𝜇0

2π

𝐼1

𝑑
field from wire 1 at the position of wire 2

𝐹2 = 𝐼2ℓ2𝐵1 =
𝜇0

2π

𝐼1𝐼2

𝑑
ℓ2

Parallel currents attract each other, while currents 
flowing in the opposite direction repel each other

← We will get to this shortly



Ampère’s law

▪ General relation between the current in a wire (of any shape) and 
the magnetic field around it
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From this, the magnetic field of a straight 
wire is:

▪ Consider an arbitrary closed path around a current. The circulation of the 
magnetic field around this closed path will be 𝜇0 times the enclosed current:

ර𝐵 ⋅ 𝑑ℓ = 𝜇0𝐼𝑒𝑛𝑐𝑙

▪ Application to the case of a straight wire:

𝜇0𝐼 = ර𝐵 ⋅ 𝑑ℓ =

= ර𝐵𝑑ℓ = 𝐵 ර𝑑ℓ = 𝐵 2π𝑟

𝐵 =
𝜇0𝐼

2π𝑟



Magnetic field of a solenoid (Homework)

▪ Let us apply the Ampère’s law to find the magnetic field of a solenoid

28

▪ The field is small outside the solenoid
(except near the end) and uniform inside the 
solenoid



Magnetic field of a solenoid (Homework)

▪ Let us apply the Ampère’s law to find the magnetic field of a solenoid
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Only the integral over the cd segment is non-zero, where 𝐵 is uniform and 
parallel to 𝑑ℓ so we get:

▪ We choose the path abcd for applying the 
Ampère’s law. We then get:

ර𝐵 ⋅ 𝑑ℓ = න
𝑎

𝑏

𝐵 ⋅ 𝑑ℓ + න
𝑏

𝑐

𝐵 ⋅ 𝑑ℓ + න
𝑐

𝑑

𝐵 ⋅ 𝑑ℓ + න
𝑑

𝑎

𝐵 ⋅ 𝑑ℓ

ර𝐵 ⋅ 𝑑ℓ = න
𝑐

𝑑

𝐵 ⋅ 𝑑ℓ = 𝐵ℓ

The total current enclosed by the loop is 𝑁𝐼 where 𝑁 is the number of loops 
contained in the path, so the Ampère’s law gives us:

𝐵ℓ = 𝜇0𝑁𝐼

If we let 𝑛 = 𝑁/ℓ be the number of loops per unit length, then:
𝐵 = 𝜇0𝑛𝐼

▪ The field is small outside the solenoid
(except near the end) and uniform inside the 
solenoid



Biot-Savart Law

▪ Describes the magnetic field coming from a 
wire of any shape

▪ The current flowing in any path can be 
considered as many infinitesimal current 
elements. If 𝑑ℓ is an infinitesimal part of the 
current path, the magnetic field in any point P
in space is given by:
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The total magnetic field at point P is then found by integrating over all current 
elements:

𝑑𝐵 =
𝜇0𝐼

4π

𝑑ℓ × Ƹ𝑟

𝑟2

𝐵 =
𝜇0𝐼

4π
න

𝑑ℓ × Ƹ𝑟

𝑟2
Biot –Savart Law



Biot-Savart Law - example

▪ Magnetic field 𝑩 due to a wire segment
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One quarter of a circular loop of wire carries current 𝐼 as shown in the figure. 
The current enters and leaves on straight segments of the wire. Find the 
magnetic field at point C. 

𝑑𝐵 =
𝜇0𝐼

4π

𝑑ℓ

𝑅2

The magnetic field from straight sections is 
zero because 𝑑ℓ and Ƹ𝑟 are parallel so 𝑑ℓ ×
Ƹ𝑟 = 0.

From the circular part we get:

We integrate over a quarter of a circle and get:

𝐵 = න 𝑑𝐵 =
𝜇0𝐼

4π
න

𝑑ℓ

𝑅2
=

𝜇0𝐼

4π𝑅2

1

4
2π𝑅 =

=
𝜇0𝐼

8𝑅



Magnetic field in materials: ferromagnetic

▪ Permanent magnets – ferromagnetic materials (Fe, 
Ni, Co, Gd only ferromagnetic elements)
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The total field inside a solenoid in this case can be written by replacing the constant 𝜇0

by 𝜇, characteristic of the material inside the coil:

▪ If we insert a piece of ferromagnetic material 
inside a solenoid the field can be increased, 
often by a factor of 100-1000. The resulting field 
is the sum of the field due to current and the 
field due to the material:

𝐵 = 𝐵0 + 𝐵𝑀 𝐵𝑀where is the additional field due to the ferromagnetic material

𝐵 = 𝜇𝑛𝐼

we can introduce the fieldH, called the magnetic field strength and defined as:

𝐻 =
𝐵

𝜇

𝜇 is the magnetic permeability of the material



Magnetic field in materials: ferromagnetic

𝜇 is not constant, it depends on the external magnetic field
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Total magnetic field of an iron core toroid Hysteresis curve



Magnetic field in materials

▪ Nonferromagnetic materials fall into two classes:
• paramagnetic with 𝜇 > 𝜇0 – attracted by magnetic fields
• diamagnetic with 𝜇 < 𝜇0 – repulsed by magnetic fields
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Paramagnetic materials have 𝜒m > 0 and diamagnetic 𝜒m < 0

▪ The ratio of 𝜇 to 𝜇0 for any material is called the relative permeability 𝐾m :

𝐾m =
𝜇

𝜇0

▪ Another useful parameter is the magnetic susceptibility 𝜒m defined as:

𝜒m = 𝐾m − 1

Paramagnetic 
substance

𝜒m Diamagnetic
substance

𝜒m

Aluminum 2.3  10-5 Copper -9.8  10-5

Platinum 2.9  10-4 Graphite -1.6  10-5

Tungsten 6.8  10-5 Bismuth -1.6  10-4



Magnetic field in materials

35

Levitating carbon
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http://www.hfml.ru.nl/froglev.html



Electromagnetic induction
▪ Changing magnetic field induces an emf (electromotive force)
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And the induced emf is:

Φ𝐵 = න 𝐵𝑑 Ԧ𝐴

ℰ = −
𝑑Φ𝐵

𝑑𝑡

▪ This emf is proportional to the
rate of change of the
magnetic flux passing through
the circuit or loop of area 𝐴.
Magnetic flux is defined as:

Faraday’s law of induction

Lenz’s law:
Current produced by an induced emf moves in such a direction that the magnetic 
field created by that current oposes the original change in flux.



EMF induced in a moving conductor

▪ Assume a uniform magnetic field B
perpendicular to the area bounded by the 
U-shaped conductor and the movable rod 
resting on it
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ℰ =
𝑑Φ𝐵

𝑑𝑡
=

𝐵𝑑𝐴

𝑑𝑡
=

𝐵ℓ𝑣𝑑𝑡

𝑑𝑡
= 𝐵ℓ𝑣

▪ If the rod moves at a speed 𝑣, it travels a
distance 𝑑𝑥 = 𝑣𝑑𝑡 in time 𝑑𝑡, so the area 
increases by an amount 𝑑𝐴 = ℓ𝑑𝑥 = ℓ𝑣𝑑𝑡

▪ According to Faraday’s law there is an 
induced emf ℰ whose magnitude is given by:



Changing magnetic flux produces an electric field

A changing magnetic flux produces an electric field in any region in 
space (not only in conductors or wire loops), so we need to find a 
more general form of the Faraday’s law
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The potential difference between two points 𝑎 and 𝑏 is defined as:

𝑉𝑎𝑏 = න
𝑎

𝑏

𝐸 ⋅ 𝑑ℓ

The emf ℰ induced in a circuit is equal to the work done per unit charge by the 
electric field, which equals the integral 𝐸 ⋅ 𝑑ℓ along the closed path:

ℰ = ර𝐸 ⋅ 𝑑ℓ

If we combine this with the Faraday’s law we get:

ර𝐸 ⋅ 𝑑ℓ = −
𝑑Φ𝐵

𝑑𝑡
General form of Faraday’s law



Changing magnetic flux produces an electric field

We can rewrite Faraday’s law using the Stokes’s theorem:
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On the left side we apply the Stokes theorem:

While on the right side we can write:

ර𝐸 ⋅ 𝑑ℓ = −
𝑑Φ𝐵

𝑑𝑡

ර𝐸 ⋅ 𝑑ℓ = න
𝑆

∇ × 𝐸 ⋅ 𝑑 Ԧ𝐴

−
𝑑Φ𝐵

𝑑𝑡
= −

𝑑

𝑑𝑡
න

𝑆

𝐵 ⋅ 𝑑 Ԧ𝐴 = − න
𝑆

𝜕

𝜕𝑡
𝐵 ⋅ 𝑑 Ԧ𝐴

So in the end we get:

න
𝑆

∇ × 𝐸 +
𝜕

𝜕𝑡
𝐵 ⋅ 𝑑 Ԧ𝐴 = 0 ∇ × 𝐸 = −

𝜕𝐵

𝜕𝑡

Differential form of 
Faraday’s law

Nonconservative!



Exercise

Find the magnetic field at point P if a current-carrying wire has the shape shown in 
parts (a) and (b). The radius of the curved part of the wire is R, and the linear parts are 
assumed to be very long.
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P P

I

P

R R R

(a) (b) (c)



Homework assignement

▪ Please refresh your knowledge on the subjects of:
• Calculating capacitance

▪ Test your new/old knowledge by solving the following exercises

1. A thin cylindrical shell of radius R1 is surrounded by a second concentric cylindrical shell of radius R2. The 
cross-section is shown on the image. The inner shell has a total charge +Q and the outer shell –Q. Assuming 
the length L of shell is much greater than R1 or R2 and neglecting the thickness of shells, determine the 
electric field as a function of the distance from center R for:
 a) 0 < R < R1

 b) R1 < R < R2

 c) R > R2

 d) Determine the formula for capacitance

… and submit your results via moodle (exercise 2)

42

 

R1

R2
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